

What do the graphs have in common?


How do you know how far out on the -axis to start the-hyperbela?

$$
\begin{gathered}
\sqrt{\text { of list denominator }} \\
\text { of lIst variable }
\end{gathered}
$$



Rewrite the equation into standard form and graph. State the Vertices, and co-vertices of the hyperbola. Vertices are on the actual graph, the co-vertices are used only to help graph the hyperbola.


$$
\begin{aligned}
& \text { Ex. } 1 \begin{aligned}
y^{2}-6 x-2 y-x^{2}-17 & =0 \\
+17 & +17
\end{aligned} \\
& y^{2}-2 y-x^{2}-6 x=17 \\
& y^{2}-2 y+\frac{1}{2}-1\left(x^{2}+6 x+9\right)=17+1+-9 \\
& \frac{(y-1)^{2}}{9}-\frac{(x+3)^{2}}{9}=\frac{9}{9} \quad\left(\begin{array}{l}
\text { must } \\
\text { so } \\
(y-1)^{2} \\
\text { by } 9
\end{array}\right) \\
& \frac{(y-1)^{2}}{9}-\frac{(x+3)^{2}}{9}=1 \\
& \begin{array}{l}
\text { Example } 2 \text { write the equation ot the hyperbola graphed. } \\
\text { center so } \begin{array}{l}
\text { opens lefty right so } \\
(-3,2)
\end{array} \text { first. }
\end{array} \\
& \begin{array}{l}
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \\
\frac{(x-3)^{2}}{4^{2}}-\frac{(y-2)^{2}}{2^{2}}=1
\end{array} \\
& \frac{(x+3)^{2}}{16}-\frac{(y-2)^{2}}{4}=1
\end{aligned}
$$

